

DARPATech 1999

Dr. Noel MacDonald, Director

MTO

- Microsystems via 'Chip-scale'
 Integration of Core Technologies:
 - -Electronics
 - -Photonics
 - -MEMS (Microelectromechanical Systems)

MTO (cont.)

• Materials, processes, devices & supporting technologies for chip-scale integration of Core Technologies

MTO Support Programs

- CAD (Computer Aided Design) for heterogeneous integration
- Simulation tools for 'chip-scale' microsystems
- Advanced Lithography

Microsystem Technology

Electronics

New Microsystem
Components for the
New Millennium

Photonics

Chip-scale' heterogeneous integration

No Boundaries

Electronic Technology

MEMS Technology Photonic Technology

The 'new gold' is found at the intersections of the 3 technologies.

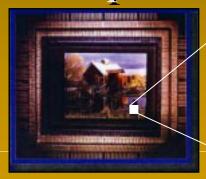
Commercial Examples:

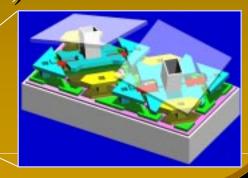
'Chip-scale' Heterogeneous Integration

Ink Jet Printer Head:

(Microelectronics/MEMS)

Commercial Examples:

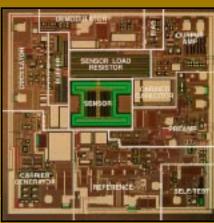

'Chip-scale' Heterogeneous Integration


Texas Instruments Digital Micromirror

Device (DMD) TM: (Microelectronics/

MEMS to direct photons)

Commercial Examples:



'Chip-scale' Heterogeneous Integration

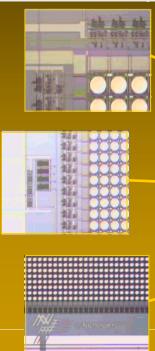
Micro Accelerometer (Airbag Deployed):

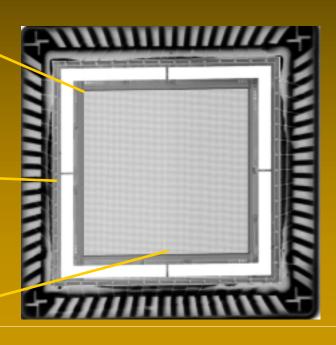
(Microelectronics/MEMS)

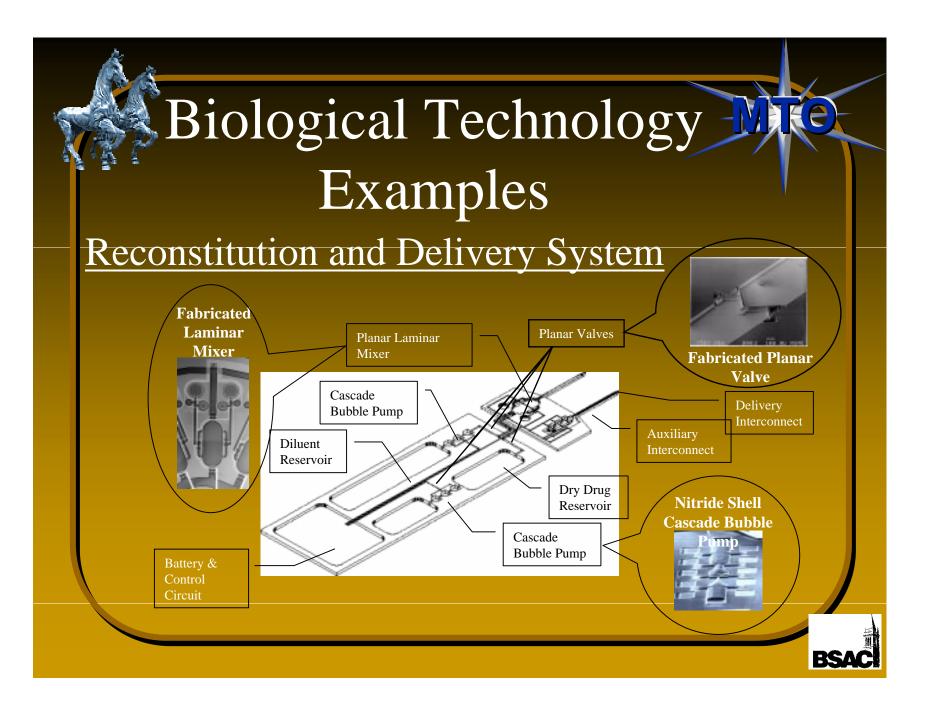
Microsystem Technologies

Focus on the "I Word" - Integration at the micro/nm scale

- -Processes
- -Contacts, isolation and interconnects
- -Mixed materials and mixed technologies
- -Multiple chip integration (not packaging)

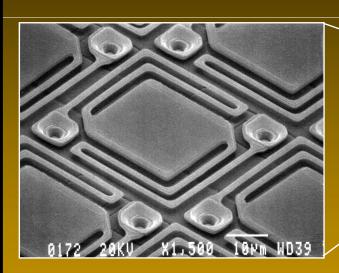

Bio Tech

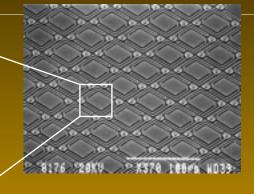

Info Tech Microsystems



Biological Technology Examples

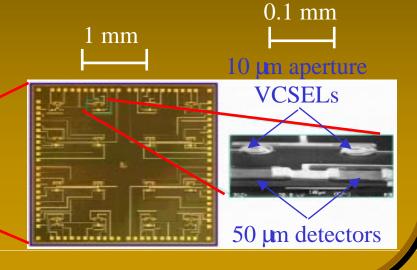
10,000 Site Assay Chip





Photonic Imaging Examples

Single-Frame @ f/2.2 (50% Trans)


Raytheon

Photonic Technology Examples

Free-Space Interconnect Demo:

First system level demonstration of integrated 2-D interleaved arrays of VCSELs and detectors (1/98)

15 cm

Warfighter Support Programs

Test cases for microsystem technologies

- -Wearable microsystems
- -Micro-scale human interfaces
- -Small size
- -Micro-UAV
- -cm³-scale robot

Small Image Sources:

640x480 AMEL for Land Warrior

1280 x 1024 high brightness AMLCD for Comanche

Members of the Team:

DARPA, SSCOM, CECOM-NVESD, ARL, USARARL, Armstrong Labs, NAWC Kopin Corp, Planar Inc., Sarnoff Corp., Allied Signal, Thesys, UMC, MIT-LL, U of Fl, GTRI, GIT, Oregon Graduate Institute, Honeywell, Hughes, Kaiser

Summary

- 'Chip-scale' integration of microsystem technologies
- Heterogeneous integration of electronics, photonics & MEMS
- 'Bio Chips' signal a new era of heterogeneous integration

- Micro-components for new systems
 & new system architectures
- High-profile commercial products have demonstrated the power of heterogeneous integration