DARPA RHEX

Alan Rudolph, DSO
arudolph@darpa.mil
Making Robots More Like Animals

Today

Rhex: a stable legged SUGV
FCS ready

The Future

What do legs, wings, fins offer Defense mobile systems?

There are many hard problems in robotics, look to biology for:

- Exploiting Robust Dynamics
- Building a Brain
- Integrate Sensors and Communications
Use Biomimetic Sensory Feedback for Higher Level Dynamic Mobility

- **Visual Odometry and Optical Flow**
 - Track motion through combined feature triangulation and image flow
 - Improved dynamic motion models will improve performance

- **Proprioception**
 - MEMs based gyros for positional information (yaw, pitch, roll)
 - Strain gauges for force feedback
 - Mems Antennal structures as bump sensors and contact guidance
DARPA Mobile Autonomous Robot Software (MARS)

Doug Gage, IPTO

dgage@darpa.mil
MARS Technical Approach

Intervention
User interfaces structured so that humans can assist robots when needed

Interaction
Natural information exchange between robots and humans -- as teammates, bystanders, supervisors, and operators

Perception
Sensor-based algorithms to sense, interpret, and “understand” salient environmental features

Learning and Adaptation
Techniques to acquire knowledge through reinforcement, supervised, or imitative learning

Behaviors and Architecture
Software components and structures to perform robot tasking
Perception

- Mapping Complex Indoor/Outdoor Environments
 - Faster, more accurate, larger scale
- Dynamic Environments
 - Detection, Tracking, Modeling
Interaction with Humans

- Demonstrated supervised machine learning of autonomous task-level behaviors through full immersion teleoperation and off-line reflective analysis.
- Mobile Remote Workstation demonstrated long distance operation of Robonaut in Houston TX from MARS PI Meeting in Arlington VA.
DARPA Grand Challenge: Open Source MARS Software

 http://www.cs.cmu.edu/~thrun/3d

- CMVision (CMU) library to perform general (i.e., and shape or color) obstacle avoidance
 http://www.cs.cmu.edu/~jbruce/cmvision

- YARP (MIT) utilities for programming abstractions used in the control of humanoid robots, an inter-process communication mechanism suited to stream large quantities of robot’s vision data, and supports a distributed architecture where there is no “in charge” module
 http://sourceforge.net/projects/yarp0

- MissionLab v5.0 (Georgia Tech) multiagent robotics mission specification and control software using high-level military-style plans and executes them with teams of real or simulated robotic vehicles.
 http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/
XVision (Johns Hopkins Visual Tracking Software) provides generic interfaces to a wide variety of camera systems, generic visual tracking primitives, and methods for combining tracking for complex situations. www.cs.jhu.edu/CIRL/XVision2/

Yampa (Yale) is a language having continuous time-varying behaviors and discrete event-based switching. “Arrows” are used to structure programs and improve efficiency. www.haskell.org/yampa/

The GRL Language (Generic Robot Language) (Northwestern is a programming language for behavior-based robot controllers that supports a large subset of functional programming semantics for real-time control and signal-processing applications. www.cs.northwestern.edu/groups/amrg/distributions/grl/grl-2.0.zip
DARPA Distributed Robotics

Elana Ethridge, MTO

eethridge@darpa.mil
Objectives:
- Small mobile robots
- Modular robots for physical reconfiguration
- Enabling technologies for:
 - actuation / locomotion
 - communication & sensing
- Demonstrate collective & cooperative behaviors with limited numbers of small robots

Challenges:
- Size
 - Mobility (ground clearance, obstacles)
 - Sufficient processing, sensing, power, communication
- Effective operation of small robots
 - Task -> behavior -> sensor
 - Tailored to the mission
DARPA Software for Distributed Robotics (SDR)

Doug Gage, IPTO
dgage@darpa.mil
SDR Technical Thrust Areas

- **Coordinated Behaviors**
 - Explicit sensor-based behavior and model-based control
 - Distributed (emergent) control techniques (e.g., analogous to potential field theory in mechanics)

- **Inter-robot Communications**
 - Lightweight energy-conserving networking protocols
 - “Pheromone” communication strategies

- **Human-robot Interface**
 - Explicit symbolic interface
 - Implicit embedded or stigmergic interface

- **Computational architecture**
 - Distributed processing
 - Proxy (off-board) processing
 - Hybrid (shared or hierarchical) processing

- **Lab & Field Experiments**
 - Control/Communications
 - Human-robot interaction
 - Technology transitions
DARPA PerceptOR

Scott Fish, TTO

sfish@darpa.mil
PerceptOR Program

• Perception for Off-Road Robotics FY01-03

• 3 Teams with complimentary approaches

• 4 Unrehearsed Field Experiments in <12 months!
 • 61 km of movement
 • 68 hrs of measured testing
 • Utilize small vehicle (commercial ATV)
 • Purposely operate vehicles in concealment terrain
 • Ft A.P.Hill, VA (woods, meadow, trail, winter)
 • Yuma, AZ (desert, spring)
 • Mountain Training Warfare Center, CA (alpine)
 • Ft Polk, LA (woods, meadow, trails, fall)

• Negotiating Phase III of Program Now!
PerceptOR Sensor Usage

- Scanning Ladar provides 3 Dimensional geometric information (day or night)
- Now getting good results with stereo (a passive sensing system) for 3D + spectral information
- Radar is good in bad weather but limited resolution
- New techniques with 2D cameras are being developed for 3D sensing while moving
Operating Day or Night

Robot running ~80% distance without Operator

5.1.2002
• Real-time UGV/UAV autonomous coordination has been demonstrated for joint perception
• Process scaleable to higher altitude platforms

UGV processes UAV Data and directs UAV flight (no human intervention)

UAV with ladar/stereo finds obstacles ahead of UGV
Prior Overhead Data Utilization

- Path planning is greatly assisted with Prior Overhead Data
- Have demonstrated autonomous re-planning onboard the vehicle
- Need to utilize this data to queue sensors and adjust perception/navigation settings
DARPA Unmanned Ground Combat Vehicle (UGCV)

Scott Fish, TTO

sfish@darpa.mil
UGCV Program

- 3 year program started in FY01
- UGV design for FCS unconstrained by human crew
- 1.5 years of design analysis of 4 designs
- Prototype vehicles (6.5 ton, 0.7 Ton) just rolled out
- Metrics:
 - Endurance: 14 days and 450 km between re-supply
 - Mobility: 1 m obstacles @ slow speed
 0.25 m obstacles at moderate speed
 - Payload fraction: 25% of gross
UGCV Advanced Technologies

Hybrid Electric Drive:
- Efficiency
- Damage tolerance
- Packaging
- Silent watch/Silent Mobility

Advanced Materials
- Weight savings
- Thermal properties
- Magnetic properties
- Fluid properties
Retiarius Rollout

January 22, 2003
Albuquerque, NM
Spinner Rollout

February 6, 2003
Pittsburgh, PA
Terrain Mobility Validation

Team Rebound
(Narrated Video)
Rock Climber Vehicle
Send Off

• Lots of robot research being done at DARPA

• Much still needs to be done

• DARPA pursues many different means to encourage Novel approaches

• Hope this has been helpful in understanding existing work

• Best of luck in pursuing your own special approaches