
 1

 June 1, 2007

DARPA Urban Challenge 2007
Team Urbanator Technical Description

Abstract
Military operations in urban environments, such as logistical resupply and transport are
becoming some of the most dangerous operations that he military has to perform. The Defense
Advanced Projects Agency (DARPA) is sponsoring the Urban Challenge Race in order to
accelerate the development of autonomous unmanned ground vehicles to carry out dangerous
operations in urban environments. PercepTek has developed an autonomous ground vehicle
based on a commercially available sport utility vehicle, commercial of the shelf sensors and
custom autonomous navigation software. The following describes PercepTek’s team, UGV
hardware design and autonomous navigation software design.

Team Contact Information:
Mark Rosenblum
Urbanator Team Leader
5705 S. Danube Circle
Aurora, CO 80015
mark.rosenblum@perceptek-robotics.com

DISCLAIMER: The information contained in this paper does not represent the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency (DARPA) or the Department of
Defense. DARPA does not guarantee the accuracy or reliability of the information in this paper

Prepared for:
DARPA Urban Challenge 2007
THE DEFENSE ADVANCED
RESEARCH PROJECTS
AGENCY
3701 North Fairfax Drive,
Arlington, VA 22203-1714

 2

1 Team Description
PercepTek’s Team Urbanator is made up of individuals that are passionate about robotics. The
members of our team have significant robotic experience that included the DARPA Grand
Challenge 2 [1] and many other government sponsored robotics programs. The team skill set is
well balanced and includes experts in robotic hardware, electronics, navigation systems, robot
perception, and robot architectures.

2 Vehicle Description
2.1 Base Platform
The base platform for this effort is a white 2007 5.3L V8 Chevy Tahoe named Rocky as shown
in Figure 1. An SUV platform was preferred over other vehicle types due to the extensive space
to install equipment in a protected and air conditioned environment. The height of the SUV was
also appealing because it allowed for mounting the perception sensors from a high view point
which allowed for a greater grazing angle with the roadway. Our system architecture does not
require an SUV platform, but it minimized issues related to packaging, power and thermal
conditioning for this effort. Our system can easily be adapted to any standard vehicle platform.

Figure 1: Team Urbanator 2007 Chevy Tahoe Platform called Rocky.

 3

2.2 Actuation
The Chevy Tahoe was modified to provide actuation of steering, throttle, brake, parking brake,
transmission and turn signals. Rather than design our own actuation package, our team chose to
purchase the AEVIT® X-wire Primary RPV Control System. This system consists of the actuation
and control for steering, throttle, brake, transmission, and ignition. This same control system is
being used on many other DARPA Grand Challenge vehicles. The decision to purchase an
actuation system rather than design a custom solution was based on cost, schedule and reliability
issues. Our integration of the AEVIT® X-wire system allows for easy operational mode change
between autonomous and manual control of the vehicle.

The AEVIT® X-Wire RPV Control
System shown in Figure 2 consists of 5
primary subcomponents that include
the main CPU, the DC servomotors for
moving the brake, throttle,
transmission and parking brake, the
Primary and Secondary Displays and
the EC Panel which acts as a driver
interface through the AEVIT system.
This special RPV version of the
AEVIT® technology was developed
specifically for autonomous vehicle
applications in rugged "off-road"
conditions.

2.3 Power System
Rocky’s power system is
composed of two distinct systems:
the vehicle power system and the
electronics power system. Figure 3
provides a block diagram of the
power systems.

The vehicle power system provides
power to OEM vehicle
components, as well as the
AEVIT® drive-by-wire system.
This system primarily consists of
the original OEM alternator and
vehicle battery. In addition, a
battery charger has been added to
this system to permit operations
while using shore power (120
VAC) for highbay development

and testing of the vehicle. It should be noted that the AEVIT® system includes an isolated
battery backup to facilitate safe operations in the event of a failure of the vehicle power system.

Figure 2: Primary AEVIT X-Wire System.

OEM Vehicle Alternator +12 VDC Battery Charger

+12 Vehicle Battery

8.5 kW
AuraGen

AuraGen ECU +
Control Panel

+24V
Electronics

Batteries (2x
+12V)

Battery
Equalizer

OEM Drive-
By-Wire

Throttle Pedal

Electronic Idle
Control
Module

+12 VDC
Battery

Chargers

Diagnostics & Display
Laptop

120 VAC to +12
VDC Voltage

Converter

Vehicle Engine

120 VAC Shore Power

Vehicle +12VDC Bus
(OEM Electronics, AEVIT
Drive-By-Wire, …)

120 VAC to +24
VDC Voltage

Converter

120 VAC Bus (processing and
control computer, network
switch, …)

Regulated
+12VDC Bus

Regulated
+24VDC Bus

power

control

120 VAC Shore Power

High Idle
Enable Signal
from Control

Computer

+24VDC
Generated /

Battery /
Shore Bus

Figure 3: Rocky’s vehicle and electronics power system.

 4

The electronics power system provides power to all components added to the stock vehicle, other
than the AEVIT® drive-by-wire system. These loads include all of the computing and sensing
hardware added to the vehicle. As this power system is separate and distinct from the vehicle
power system, the vehicle is easily returned to a configuration of a stock vehicle, augmented by
the AEVIT® system, simply by disabling the electronics power system. The electronics power
system is composed of a number of components, including an AuraSystems G8500XM 8.5kW
AuraGen ICS system, an electronic idle control module, a set of 12V batteries, a 24VDC to
12VDC battery equalizer and 120VAC to 24VDC shore power source.

The AuraGen system consists of an under-hood generator driven by the vehicle engine, an
electronics control unit (ECU), and a control panel. The Auragen ECU converts the
unconditioned AC power from the generator into 24VDC which is used for battery charging and
driving an internal 24VDC to 120VAC inverter. The 24VDC load/charging bus is bidirectional
in that when a disruption of generator power occurs (e.g., UGV engine failure) 120VAC and
24VDC load power is not lost as the system will seamlessly fault over to the 24VDC battery
array. Seamless transfer between generator (engine) and shore power operation is similarly
handled by having the 24VDC shore power attached to the 24VDC load/charging bus.

The AuraGen generator must spin at a minimum rate to both provide power to the nominal
system load to avoid discharge of the electronics batteries, as well as to provide cooling. With
the nominal idle speed of the engine, and the ratio implemented in the pulley system for spinning
the generator, the generator does not spin fast enough at idle to meet the minimum generator
speed. Therefore, an electronic idle control module is utilized to increase engine idle speed.
This module interfaces between the OEM drive-by-wire throttle pedal and the engine computer.
With a software controlled enable signal, the module increases engine speed to meet the
minimum speed required for the generator. Rocky’s control computer enables this module when
the vehicle is in park, and when traveling at low speeds.

For shore power operations, with the engine off, two battery shore power chargers provide up to
40A each at +24VDC, from 120 VAC shore power. In the shore power configuration, the
chargers provide sufficient power to charge the electronics batteries, as well as provide sufficient
power to maintain operation of the 24VDC and 120VAC Navigation Power System loads and
charge the back up batteries.

To provide +12 VDC and +24 VDC power buses, two AC to DC power converters are utilized.
The use of power converters, as opposed to tapping directly from the electronics batteries,
provides filtered, well-regulated DC supplies to system components, and additionally provides
graceful degradation of functionality when the electronics batteries are not otherwise sufficiently
charged.

2.4 Safety System
Our safety system has two modes of operation: manned and unmanned. In the manned mode of
operation, a safety driver sits in the driver’s seat and overtakes the autonomous system when
necessary. In the unmanned mode of operation, a remote emergency stop system has been
installed that when activated will cause maximum deceleration of the vehicle and kill the engine.
In this section we discuss each of these safety modes of operation.

 5

2.4.1 Safety for Manned Mode Operations
Most of our testing takes place in the manned mode of operation. In this mode of operation a
trained human safety operator is sitting in the driver’s seat of the robotic vehicle. The safety
operator can either manually control the vehicle through the normal vehicle interface (steering
wheel, brake, and throttle) or put it in autonomous mode with the flip of a switch.

The main responsibility of the safety
operator is to ensure the robotic platform
causes no harm to humans, property or the
vehicle itself. This is our team’s preferred
mode of operation especially during
integration and testing of new autonomous
functions where unexpected results may
occur. Our team has used this safety
approach successfully across many ground
robotics programs with no safety issues.
The safety operator has two means to
regain control of the vehicle while in
autonomous operation. Figure 4 shows the
driver access to the various mechanisms
for overtaking computer control in
autonomous operation. The simplest and
most natural mechanism for overtaking the
vehicle is to overpower the offending

control degree of freedom. In other words, fight the actuation for the steering, brake and throttle.
In all degrees of control, the low-level controller will attempt to overcome the resistance on
achieving its goal and compensate by applying more power to the impeded or opposing actuator.
In the case of overriding the brake or throttle actuator, the controller will respond with more
throttle or brake, respectively. Therefore, this approach is considered a “first response” to a
hazardous situation and must be followed by additional steps in order to disable the actuation
system.

Unlike the first method of overtaking the autonomy, the second mechanism does not require any
additional disabling to regain control of the vehicle. This second method of overtaking the
autonomy involves disabling the autonomy through various interfaces in the vehicle. This
disabling can occur through the toggling of either of two toggle switches mounted on the steering
wheel for “finger tip” control or through the depression of one of two red mushroom buttons
mounted on the dash of the vehicle. One mushroom button is mounted near the driver and the
second is mounted near the passenger seat. Once either of these disabling pathways is activated,
control of the vehicle atuators is returned to the safety driver who must safe the vehicle (i.e.,
correct trajectory and velocity to meet current situational need).

2.4.2 Safety for Unmanned Operations

Figure 4: Manned Safety Overtake Mechanisms

 6

The unmanned mode of operation is only used after extensive testing of the robotic system and it
has proven to be reliable. This mode of operation was used for the filming of the video for the
DARPA Urban Challenge video submission and is intended to be used for the NQE and the
Urban Challenge race event. Our team also runs in this mode on a weekly basis with a safety
operator in the driver’s seat to validate that the remote emergency system is functioning properly
and to keep the remote safety operators trained. Our remote emergency stop system is the
Omnitech Two-way Safety Radio for Unmanned Ground Vehicle Operations (Omnitech-SR),
shown in Figure 5, which is the same emergency stop system used for the previous Grand
Challenge races. The Omnitech-SR consists of the Safety Receiver, which is integrated with the
unmanned vehicle, and the Transmitter which is operated by a human safety monitor in a remote
position relative to the robotic platform. The Omnitech-SR has two modes of remote
intervention: Pause/Run and Enable/Disable. On the activation of a Pause, the robotic platform
comes to a controlled stop and the actuation system is disabled until a Run command is issued.
When a Disable is issued, the vehicle comes to an abrupt stop, the parking brake is engaged, the
power is cut to the actuation system and the vehicle engine is killed.

2.5 Environmental
All of the vehicle electronics are mounted in the rear cargo area of the Chevy Tahoe leaving the
middle row of seats intact.

2.5.1 Shock Isolation
The rack enclosures are supported on each corner using Lord Heavy Duty Platform shock isolation
steel cup mounts. The selection of the mounts was based on analysis of the weight of the rack and
components under urban driving conditions.

2.5.2 Thermal, Dust and Moisture
One of the reasons our team chose an SUV as our base platform was that all environmentally
sensitive hardware could be mounted in the vehicle, thus significantly reducing issues with dust,
moisture and thermal conditioning. Through analysis, we determined that the stock air conditioner
on the 2007 Chevy Tahoe could handle the thermal load of all the electronic hardware that was to
be installed in the vehicle. Some modifications were made to the ducting in order to vent cool air
directly into the enclosures containing the electronics.

Figure 5: Omnitech-SR remote emergency stop system integrated into the Rocky

safety system.

 7

2.6 Processing Architecture

2.6.1 High Level
The high level processing cluster is composed of 8 dual core 2.2 GHz Opteron 848HE processors
in a single server enclosure. The system uses a Tyran Thunder S4882 Quad Opteron
motherboard with daughter card. Four of the processors are on the main board and four are on
the daughter card. All processors share 16 GB of RAM. The system also has two 500GB SATA
hard drives for storage. This configuration and processor set was selected for both processing
horsepower, low power usage, ease of use and operation under a standard Linux distribution.
The high level processing cluster is built around the SUSE 10.1 Linux distribution running a 64-
bit 2.6 kernel.

All processing in the cluster was designed and implemented using C and C++ in Linux. The
processes responsible for sensor and navigation processing as well as the high level path
planning are dynamically and automatically allocated across the processing cluster by the Linux
symmetric multiprocessing configuration. The inter-process communication is handled using the
Neutral Message Language (NML) developed at the National Institute for Standards and
Technology. This approach provides a common memory-mapped interface both within each and
across all of the processors in the cluster. The high level processing architecture is separate from
the low-level control processing and the interface between the two is over a Gigabit ethernet
network using a DLink Gigabit switch.

2.6.2 Low Level
The low-level processing is the bridge between the high level behaviors and the vehicle hardware
and is also responsible for managing the vehicle safety system. When the high-level architecture
desires a specific steering command, it sends a command packet over the ethernet to the low-
level controller for execution. The low-level controller has analog outputs to control the steering
and brake/throttle actuators. The low level controller uses an RS232 serial bus to command the
transmission and accessories (e.g., turn signals, head lights, etc.). The low-level processor is a
VersaLogic Cobra embedded EBX board with a 1.6 GHz Pentium-M processor, 512Mbytes of
RAM and an 80Gbyte hard drive for data storage. The processor operating system on the low-
level processor is SUSE 10.1 Linux in a 32 bit configuration.

2.7 Localization
Navigational position and orientation sensing is provided by an Applanix POS LV 220, a
commercial off-the-shelf tightly coupled inertial and GPS navigation system. The Applanix
system consists of several L1, L1/L2 and differerential GPS receivers, an inertial measurement
unit (IMU), and an interface to the OEM Speed sensor for odometry purposes. Figure 6
illustrates the different components of the POS LV system and the flow of POS data within our
navigation system.

With the use of OmniStar VBS DGPS service, Table 1, below, provides accuracy specifications
of the POS LV 220 system both during nominal operations, and through successively longer
GPS outage durations.

The vehicle control computer is responsible for interfacing with vehicle navigation sensing, and
providing the navigation solution to other consumers in the system. To accomplish this task,

 8

Figure 6: Rocky’s Navigation System.
several software components are utilized. A software module is responsible for interfacing with
the Applanix via TCP/IP sockets on a dedicated 100 Mbit Ethernet network. This software
module is responsible for issuing control and configuration messages to the POSLV, and more
importantly, parsing the navigation data stream from the POS LV and providing formatted data
to other consumers in the system. The software module also provides a data collection capability
that is always running, and can be saved off to disk when desired in order to capture significant
events.

Trimble AgGPS 332
GPS Receiver

Applanix
POSLV 220

PCS

Honeywell
HG1700

IMU

Direct
Measurement

Interface

OEM Speed
Sensor

Vehicle Control Computer

Vehicle Network (TCP/IP to
Processing Computer and

Display & Diagnostics Laptop)

Applanix Control
& Data Stream

Parsing

Data
Collection

to Disk

Dedicated 100 Mb
Ethernet Network

NMEA
Parsing

L Band GPS
Antenna

Primary L1,L2
Band GPS
Antenna Secondary

(GAMS) L1,L2
Band GPS
Antenna

RTCM DGPS
Corrections
(OmniStar

VBS)

Socket
Relay

Full Navigation
Solution

 0 sec GPS
outage

15 sec GPS
outage

30 sec GPS
outage

60 sec GPS
outage

120 sec GPS
outage

X, Y
Position
RMS
Accuracy
(m)

1.0 1.13 1.25 1.5 1.75

Z Vertical
Position
RMS
Accuracy
(m)

1.5 1.63 1.75 2.0 2.2

Roll and
Pitch RMS
Accuracy
(deg)

0.07 0.07 0.07 0.07 0.07

Heading
RMS
Accuracy
(deg)

0.07 0.07 0.07 0.07 0.08

Table 1: POS LV 220 Accuracies during nominal periods, and through GPS outages

 9

A dedicated software application has been developed for the Rocky vehicle for display of
navigation data, as well as to provide diagnostic, analytic and calibration functions. This
software application executes on a developer’s computer, either from a live data stream provided
by the socket relay function of the Applanix interface software module, or from stored data
collections. This application provides a real-time display of navigation data, including the

essential navigation solution, and
other ancillary data, such as status
of the POS LV and GPS satellites
tracked. This application also
provides analytic functions, such as
GPS outage times, maximum error
and so forth. Finally, this
application also provides
calibration functionality, such as
correction of IMU mounting
angles, and visualization of
calibration parameters. Below,
Figure 7 shows a sample
screenshot of execution of this
application.

2.8 Hardware Configuration
Figure 8 shows the interconnectivity of all of the hardware components on the Rocky vehicle
except for the power system.

Figure 7: Navigation display, diagnostics, analysis,

and calibration application

Figure 8: Hardware Configuration

 10

3 Sensing
3.1 Analysis Approach
In order to generate the requirements for the sensor system, we analyzed the sensing
requirements for each of the individual low-level robotic behaviors. The analysis was performed
for maximum and minimum sensor range and horizontal and vertical fields-of-view for each
sensor type. Much of the sensor analysis is based on techniques outlined in a paper by Alonzo
Kelly of Carnegie-Mellon University [2]. In order to determine the requirements of a particular
sensor, we used the most stringent requirement for each type of analysis across the set of
behaviors which use the sensor. We used five forms of analysis to define requirements for the
urban environment. Some of the analyses build on each other and some of the analyses are very
specific to a particular environmental situation. Figures 9-13 show the five types of analyses
used to define sensing requirements.

Figure 9 shows the Pure Stopping Maneuver analysis. This analysis is used to determine
required sensing range and is based on the premise that a sensor must be able to see out further
than the minimum distance it takes the vehicle to stop at full braking which is considered the
most elementary means of collision avoidance. This idea becomes clearer if the inverse logic is
considered where the sensor cannot see beyond the stopping distance of the vehicle. If a hazard
is detected at the fringe of the detection range and the vehicle responds with full braking, it will
collide with the hazard, where if the detection was made further than the stopping distance, the
vehicle would stop before contact was made. This analysis uses standard kinematics equations
to determine the stopping distance of the vehicle. For the pure stopping maneuver a worst case
analysis was performed using the DARPA specified maximum mission speed of 30mph. Other
term values were 0.1 seconds for actuation time, 0.1 seconds for algorithm cycle time, 0.03
seconds for data acquisition time or the frame rate of a standard camera, a coefficient of friction
of 0.8 and a safety buffer zone of 2 meters. We also assumed a 0% grade of the terrain. This
analysis was used to determining the range of our obstacle avoidance trajectory planning system
and our road and lane tracking algorithms.

Figure 10a shows the Horizontal Field-of-View analysis. The idea here is that the sensor
coverage must cover the full area in which the vehicle can travel in a Pure Stopping Maneuver,
i.e., the vehicle is full braking while at the same time, steering away from the hazard. With the

Bddd
g

Vd

VTd

TTTT

reactbrakestop

brake

reactreact

cycleframeactreact

++=

=

=

++=

μ2

2

2

Figure 9: Pure Stopping Maneuver: Treact is the reaction time based on the
actuation time(Tact), frame time (Tframe) and cycle times (Tcycle). B
is a safety buffer.

 11

added steering maneuver the analysis gets more complex because at higher speeds while turning,
two forms of instability can be induced: 1) the vehicle rolling or 2) the vehicle sliding sideways.
This analysis takes into account the roll/slip instability and restricts the horizontal field-of-view
of the sensor to deal only within the stability limits of the vehicle. Figure 10b shows a plot of the
horizontal field-of-view requirement versus speed. At the lower speed ranges as the speed
increases, the horizontal field-of-vehicle requirement also increases. However, above 17 mph,
the vehicle cannot make hard turns due to the roll/slip instability, so the horizontal field-of-view
requirement begins to drop at these higher speeds. For our requirements, we used the most
stringent requirement or the peak of the field-of-view curve in Figure 10b.

Where the previous two analyses were based on emergency maneuvers of the vehicle to avoid a
collision, the intersection analysis in Figure 11 is based on being able to see all vehicles in the
crossing lanes of traffic that could interfere with a safe crossing of the intersection. The analysis
assumes that the host vehicle is stopped before the intersection and the cross traffic is moving at
the maximum allowable speed of 30mph. Other assumptions for this analysis are listed in Table
2. The first step in determining if it is safe for the host vehicle to cross the intersection is to
determine how long it will take the host vehicle to cross the intersection with a margin of safety
of 2 seconds. Our assumption is that the intersection is two lane widths wide and the host
vehicle starts from a stopped position and has an acceleration of 0.25 g’s. The intersection
crossing time is multiplied by the speed of the cross traffic to get the distance traveled by the
cross traffic in the time it takes for the host to pass through the intersection. This distance then

Figure 10: Horizontal Field-of-View Analysis: (a) The sensor system must cover the full envelope

where the vehicle could drive to a distance of the full braking stopping distance; (b)
horizontal field-of-view versus vehicle speed.

[]dk

reactbrakestop

stop

Bddd

d

hfov

ρρρ

ρ
φ

φ
φα

α

,max

cos1
sintan

2

min

min

1

=

++=

=

⎥
⎦

⎤
⎢
⎣

⎡
−

=

=

−

velocity vs. hfov

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

Velocity (mph)

hf
ov

 (d
eg

)

hfov (deg)

ρk = mechanical limited minimum steering radius
ρd = minimum dynamic steering radius based on roll/slip instability

(a) (b)

Assumptions Value
Host Vehicle Is Stopped N/A
Perpendicular Intersections N/A
Cross Traffic Speed 30 mph
Time Margin 2 seconds
Intersection Width 2 lane width wide (~7meters)
Acceleration of Host 0.25g’s
Intersection is Orthogonal

Table 2: Intersection Analysis Assumptions

 12

becomes the detection range for the sensor used for detecting cross traffic. A conservative
analysis for the required field of view would assume that the host needs to see infinitely far to
both the right and left of the intersection leading to a field-of-view requirement of 180 degrees
for an orthogonal intersection.

Two other forms of analysis: Merge/Lane Change and
Hard Turn Analyses shown in Figures 12 and 13,
respectively. These, like the intersection analysis are
very specific to the urban environment. The results of
all five analyses with respect to the relevant behaviors
are shown in Table 3.

The resulting sensor configuration for our Urban
Grand Challenge vehicle is shown in Figure 14 where
each sensor meets the sensing requirements across the
set of relevant behaviors to which it is assigned. The
forward looking cameras will be used for lane
tracking and making a left turn. The front looking
radars as well as the front looking SICK laser will be
used for forward obstacle detection. The front
looking radars will also be used for safe gap
maintenance between the host vehicle and any vehicle
in-front of the host vehicle. The downward looking
SICK will be used for the hard right turn around a
corner with a curb. The side looking SICKs will be
used for lane changing and merging. The side
looking radars and front looking SICK will be used to
determine intersection clearance for crossing.

Figure 12: Merge/Lane Change
Analysis: The detection range for
sensing vehicles in the adjacent lane
must be greater than the stopping
distance of the vehicle in the adjacent
lane.

Figure 11: Intersection Analysis: Host vehicle must be across

intersection from a stopped position before the
crossing vehicle arrives at the intersection.
Therefore, the host vehicle must see out further than
the cross traffic can travel in the time it takes the
host to cross the intersection with some safety
margin.

crosshostcross

host

lane
host

VTR
a
wT

=

=
4

ahost = maximum acceleration of host vehicle
Thost = time for host to cross intersection
Rhost = distance traveled by cross traffic

 13

The backup SICK will be
used for detecting hazards
behind the vehicle when
backing out of a parking
spot or the reverse portions
of a three point turn. The
summary of sensor ranges
and fields of view are
shown on Table 3 along
with the behavior the
sensor supports and the
analysis types used to drive
its geometry requirements.

3.2 Sensor Specifics
SICK LMS Line Scan LIDAR
A combination of SICK LMS line scan lidar units like the
one shown in Figure 15 are used for close range terrain
sensing on the Rocky vehicle. The LMS 290-S14 (90 deg
at 0.5 deg/sample with 75Hz scan rate) mounted on the
front sensor rack looking downward is used for curb
detection and determining drivable surfaces. A LMS 211-
30106 (180 deg at 1 deg/sample with 75Hz line scan rate)
mounted on the front sensor rack looking forward is used
for obstacle detection. The same SICK is mounted on both
sides of the vehicle for lane change maneuvers.

Figure 13: 90o right turn analysis

radius steering vehicleminimum

sin

sines of law using
90

2

min

min

min1

≡

⎥
⎦

⎤
⎢
⎣

⎡ −
=

−=
=

−

ρ
ρ

ρθ

θα
α

lanew

hfov

behavior Sensor Type hfov (deg) vfov (deg)
maximum
range (m) analysis type

Lane Tracking camera 58 15 17 hfov analysis, stop
distance analysis

Paved/Unpaved Roads camera 58 15 17 hfov analysis, stop
distance analysis

Safe Gap Maintenance radar, camera 58 15 17 hfov analysis, stop
distance analysis

Lane Change side looking laser 180 NA 17 merge/lane change
analysis

Merge side looking laser 180 NA 17 merge/lane change
analysis

Intersection Crossing side looking radars, front
looking laser

15 (radars),
180 laser, 100

camera
NA 120 (radar), 15

(laser) intersection analysis

90 degree Right Turn at
Curb downward looking laser 90 NA 5m curb analysis

Left Turn Across Traffic side looking radars, front
looking laser

15 (radars),
180 laser NA 120 (radar), 15

(laser) intersection analysis

Obstacle Avoidance laser, radar 58 NA 17 hfov analysis, stop
distance analysis

Pullin Parking Spot laser 180 NA 3m hfov analysis, stop
distance analysis

Pullout Parking Spot backup aid radar 180 NA 5m hfov analysis, stop
distance analysis

U-turn (5 mph) laser 23 NA 3m hfov analysis, stop
distance analysis

Intersection Queing laser 23 NA 3m hfov analysis, stop
distance analysis

Table 3: Limiting Sensor Configuration

Figure 15: SICK Laser Scanner

 14

Delphi ACC3 Radar
The Rocky vehicle is equipped with five production Delphi Forewarn® Smart Cruise Control
radars (ACC-3) like the one shown in Figure 16. These radars were designed for adaptive cruise
control and automated safety controls in passenger
automobiles. Smart Cruise Control radars use a
mechanically-scanning, 76 GHz FMCW, long range radar
sensor to detect objects in the vehicle’s path up to 500
feet (152 meters) ahead. The ACC radars have a 15
degree field of view. For the Rocky vehicle, three ACC
radars are configured across the front of the vehicle in a
manner to provide a 45 degree field of view. This
configuration is critical in order to detect potential
obstacles in the opposing lane before attempting a lane
change maneuver. An ACC radar is mounted on each side of the vehicle angled to detect cross
traffic out to greater than 100 meters at an intersection. Data from the five radars is transmitted
via a CAN interface to a Radar Interface Microcontroller which converts the CAN signal to
Ethernet where the data is then read by the main navigation computing cluster and is made
available for behavior analysis.
Sony FireWire Camera
All of the cameras on Rocky are Sony DFW500VL color firewire cameras. The cameras have
auto-exposure, auto-gain and auto-iris. This improves the cameras ability in diverse lighting
conditions. The camera produces imagery in multiple formats and frame sizes. For this
application all of the cameras are set to provide 320x240 color imagery at frame rate.

Figure 14: Sensor Configuration based on sensor analysis.

Figure 16: Delphi ACC3 Radar

 15

4 Control/Software Architecture
4.1 Architecture Components
The software architecture is shown in Figure 17. The key responsibilities of the software
architecture are: 1) reading the desired mission file, 2) planning a route to achieve all of the
mission checkpoints, 3) combining behaviors and sequencing these combinations in an optimal
way to achieve the mission, 4) providing data access for all components of the system, and 5)
coordinating an appropriate response to dynamic changes in the environment. Our Urban Grand
Challenge software architecture grew out of the architectural approach we used for our Grand
Challenge 2 system, which made extensive use of environmental contexts. In our system, an
environmental context encapsulates a particular environmental scenario to which we assign
sensors, algorithms and parameter settings which are best suited for the context. In a Grand
Challenge 2 mission, we would dynamically switch between contexts, thus activating and
deactivating algorithms and sensor streams to best handle the current context. In studying the
Urban Grand Challenge problem, we determined that the use of environmental contexts could be
extended in order to achieve the complex missions characterized by the DARPA Urban
Challenge.

Figure 17: Team Urbanator Urban Challenge Software Architecture.

 16

The main components of the architecture, as shown in Figure 17, are the robotic behaviors that
are part of behavior sets associated with specific environmental contexts. A single behavior can
be part of multiple environmental contexts and multiple instances of a particular behavior type
may exist with each tied to a different sensor input. For instance, we may have an obstacle
avoidance algorithm coupled with a radar, and a different instance of the same obstacle
avoidance algorithm taking in data from a laser. The outputs from the current active set of
behaviors are presented to an arbiter called COMA (Contextual Operating Mode Arbiter) that
combines the outputs of the set of behaviors into a single resultant control response for speed and
steering. The current environmental context is maintained by the context stack manager. The
stack internal to the stack manager is a set of ordered contexts that were pre-planned based on
the desired set of mission checkpoints. The stack data structure is used so that the architecture
can deal with dynamic environmental events by pushing new contexts onto the top of the stack.
For instance, if a slow moving vehicle is encountered in the host vehicle’s lane of traffic a “pass-
vehicle” context is pushed to the top of the stack. After the completion of the pass, the pass-
vehicle context is popped off and the old context is resumed.

In order to deal with blocked routes and replanning, the context stack manager updates a globally
accessible set of buffers. The first buffer contains the current segment identification number and
status of progress on that segment. On a blocked route where a replan operation must be
invoked, the planner will know what segment caused the failure and will not incorporate that
segment into the new plan. The second buffer maintains a status of the mission checkpoints and
whether they have been achieved or not. The planner uses this information to prevent the
generation of a new plan that attempts to achieve checkpoints that have already been achieved
through the execution of the previous plan. In the following sections we describe our planning
approach.

4.1.1 Planning
Our planning system shown in Figure 18 consists of two stages. The first stage called the Road
Network Planner uses a constraint based planner to generate a path from a start node to a goal
node through the directed graph. The second stage of the planning called the Context Stack

Figure 18: The High Level Planning approach consists of two

stages. The first stage produces the optimal path
through the directed graph and the second stage
produces a context stack augmented canned behavioral
sequences.

 17

Generator traverses the path through the graph producing the context stack that will be sent onto
the context stack manager for execution. In the process of constructing the context stack, the
second stage planner inserts specific context sequences that have been formulated to handle very
specific environmental situations such as stopping for a stop sign. In the following sections we
describe each stage of the planner in more detail.

4.1.2 Road Network Graph Planner
A directed connected graph is constructed by the Road Network Data File Parser (RNDF Parser)
from the Road Network Data File provided by DARPA. The nodes in the graph correspond to
waypoints in the RNDF and the directed edges between nodes are established by applying a
simple set of rules based on keywords and format of the RNDF. For example, a sequence of
waypoints making up a lane in the RNDF are sequentially connected with directed edges in the
order they are presented in the RNDF. Keywords such as “exit” are also used to establish links
between nodes. Zones are incorporated into the connectivity graph with each parking spot being
represented by two nodes that correspond to the two waypoints that make up a parking spot. The
parser also stores attributes of waypoints specified from the RNDF such as whether a waypoint
corresponds to a stop sign, checkpoint, and/or parking spot. In addition, the parser collects or
infers attributes on edges based on whether the edge is an exit or entry into or out of a parking
spot. The exit edges can further be refined into whether the exit represents a left turn, right turn
or straight connection between map entities. A connected graph, based on a small portion of the
sample RNDF provided by DARPA, is shown in Figure 19 along with node and edge attributes.
The stage one planner uses the directed edge connectivity to generate a path from a start point to
a goal point based on the A* constraint based planner. In generating our optimal plan, we will be
able to use any combination of a distance, time or route complexity constraints. Since it will be

Figure 19: Connectivity Graph produced from the sample RNDF

 18

necessary to achieve the set of checkpoints provided in the Mission Data File in the correct
order, the Road Network Graph Planner produces sub-plans from the start location of the host
vehicle to the first checkpoint, and between subsequent checkpoints. The final plan provided to
the Context Stack Generator is a concatenation of the set of sub-plans.

4.1.3 Context Stack Generator
The purpose of the Context Stack
Generator is to convert the path
through the directed graph produced
by the stage one planner into a
“robotic” plan that is of a form that
can handle dynamic environmental
events, and has been augmented with
specialized context sequences
designed to handle upcoming
environmental situations known to
occur along the route from the
attributes obtained from the RNDF
such as a stop sign or intersection.
Figure 20 shows the augmentation of
the context stack for a small portion
of the path from the directed graph in
Figure 19. The augmented context
stack contains canned context
sequences designed to handle
specific environmental situations
such as stop signs, left turns, right turns and achieving checkpoints. The individual
environmental contexts that make up the context stack are in a form that can be executed by the
rest of the architecture. As each context is completed, which is indicated by one or more of the
behaviors running in the context, the context gets popped off the context stack and the
subsequent context becomes the current active context.

4.1.4 Context Stack Manager
The high level management of the plan execution is handled by the Context Stack Manager. The
Context Stack Manager has several responsibilities: 1) control the sequencing of contexts in the
stack, 2) handling dynamic environmental events, and 3) forcing a replan if the current executing
route is blocked. The sequencing of contexts in the stack is handled in the following way. The
current active context that gets executed by the rest of the architecture is the context at the top of
the stack. On the completion of a context, which is indicated by the Context Complete event
from one of the behaviors in the current context, the current context is popped off the stack and
the next context on the stack becomes the active context. The ability to handle dynamic
environmental events is dealt with in two ways: 1) the context itself can handle the event such as
avoiding a hazard, or 2) a specific dynamic event is detected requiring a specialized event
resolution context sequence to preempt the current active context and handle the situation. The
preemption of the current active context is achieved by pushing the event resolution context
sequence to the top of the context stack. On completion of the resolution sequence, the system

Figure 20: Generation of the context stack from the
path through the connected graph
representing the sample RNDF.

 19

reverts back to the prior context before the dynamic event occurred. An example of one of these
specialized events is the requirement to pass a slow moving vehicle in the host vehicle lane. A
replan occurs when a specific behavior determines that it has no path. This could be an obstacle
avoidance algorithm seeing all candidate steering directions blocked by hazards. The offending
behavior signals the COMA arbiter that the path is blocked. COMA then sets the No Path buffer
to true which is in turn seen by the Context Stack Manager causing it to generate a replan signal
to the planner.

4.1.5 Context-Based Arbitration
Our software architecture design is based on the premise that not all sensors and algorithms are
optimal for all environmental situations. For instance, an autonomous vision-based road-
follower will not work well in an off-road situation where there is no road. It is even possible
that if the algorithm is allowed to influence vehicle control in this situation, it can generate the
incorrect response for the situation leading to navigation failure. Our software architecture
design philosophy is to be able to dynamically and optimally reconfigure the software
architecture based on the current environmental situation. At the heart of our context based
approach is COMA (Contextual Operating Mode Arbiter). COMA is responsible for monitoring
the current environment context and dynamically reconfiguring the behavior sets based on
changes in context. The association of sensors to behaviors and behaviors to contexts is
maintained in configuration files and can be easily modified.

At the lowest level of COMA is the reactive layer of behaviors. Behaviors are categorized into
positive and negative behaviors. A positive behavior is one that has a specific direction it desires
to travel. A road-follower is an example of a positive behavior because it is attempting to steer
the vehicle to the center of a road. A negative behavior is one that blocks candidate steering
directions based on the hazard level of those candidates. The obstacle avoider is an example of a
negative behavior. Based on the importance of the behaviors relative to the other behaviors in
the context and the instantaneous confidences from the active behaviors in the context, COMA
combines the steering and speed responses from these behaviors into a resultant speed and
steering response that gets passed on to the controller for execution. If a behavior within the
current context determines that there is no path, COMA performs several mitigation steps before
passing the No_Path event up to the planner for a replan. COMA was the basis of our
architecture for the Grand Challenge 2 and we exploited the context-based philosophy
extensively in our Urban Grand Challenge architecture.

4.2 Behaviors
The role of a behavior in a reactive robot control architecture is to generate a control response on
a very specific input type. If it is required that the system respond to additional input types, then
additional behaviors are required in the system. Therefore, it is typical that multiple behaviors
are executing concurrently in a reactive system. In this section we describe the behaviors used in
the architecture.

4.2.1 Waypoint Following
The waypoint following behavior steers the vehicle along a sequence of waypoints attempting
minimize the vehicle’s normal distance from the segments connecting the adjacent waypoints.
The only sensing modality used by the waypoint follower is the navigation system.

 20

4.2.2 Geo-Maneuvers
These are navigation only behaviors and they include “Right-Turn”, Left-Turn”, Geo-Stop, and
U/K turn. For these precanned trajectories, the algorithm servos around the navigational position
of the vehicle relative to the trajectory generating the appropriate steering command to minimize
offset from the planned path.

4.2.3 Obstacle Detection and Avoidance
The function of this behavior is to detect and avoid hazards that occur along the desired route of
the vehicle. The algorithm uses a 2.5 dimensional map as shown in Figure 21 to represent the
environment around the vehicle. The map can be populated by any combination of radar, laser
or camera data. The map is vehicle centered which means as the vehicle moves, the objects in
the map are translated relative to the vehicle. The planning component of the map can function
as either a positive or negative behavior. In order to function as a positive behavior, the
algorithm requires a desired route in the form of waypoints. The plan generation is based on an
A* constraint based trajectory planner that plans around hazards in the map and produces a
trajectory that achieves the goal point from the desired route. If the behavior is functioning as a
negative behavior, it costs a set of candidate steering directions represented as steering radii. As
a negative behavior, the behavior determines where the system should NOT drive. The
algorithm can dynamically switch between a positive and negative behavior if there is no desired
route to follow as a positive behavior.

4.2.4 Safe Gap Maintenance
This behavior maintains a safe gap distance between the host and a lead vehicle in the predicted
path of the host by controlling the host vehicle’s speed and acceleration. It detects if there is a
lead vehicle in front of the host vehicle in the predicted path of the host using the front facing 45
degree radar array mounted on the front of the vehicle. The radar provides range and angle to a
set of potential targets. The algorithm determines which targets are relevant to its predicted path
and how to respond to the target if it is relevant. Safe gap maintenance is considered a positive
speed behavior in the COMA arbiter.

Figure 21: The Layers of the obstacle avoidance map correspond to relevant vehicle

dimensions and capabilities.

 21

4.2.5 Unstructured Road-
Following
The purpose of this algorithm is to
keep the vehicle a minimum
distance from a road edge for
unmarked roads (no lines). This
algorithm will detect contrast
based road edges such as a
boundary between a paved road
and gravel shoulder in a color
camera image. The algorithm will
make use of a set of visual and
geometry cues to produce the best
contrast edge. The set of cues used cycle to cycle can change dynamically to optimize the
contrast edge. Once the contrast edge is determined, it is fit with a cubic spline and from this a
drive-to point along the curve is computed for a lookahead distance that is based on vehicle
speed. In the Urbanator architecture, this algorithm acts as a negative behavior essentially
pushing the vehicle away from the boundaries of the center of the driving lane. Figure 22 shows
the output from the output from this algorithm. The left image shows the estimated road edges
and the right image shows the classified road as a green overlay in the scene used to generate the
road edges.

4.2.6 Structured Lane-Tracking

The purpose of this algorithm is to keep the vehicle laterally centered in a marked lane through
straight-aways and curves. The algorithm uses the imagery from a front-mounted camera, and
extracts the road lines from the scene. The algorithm then estimates the upcoming road

Figure 22: The left image shows the original color
image with the road boundary shown as connected
yellow line segments. The right image shows the
classification of the road as green.

Figure 23: Algorithmic stages for our structured lane-tracking algorithm.

 22

Figure 24: Visual Stop line algorithm.

Figure 25: Virtual Bumper Zones

curvature and generates a steering command to maintain the vehicle’s lateral position in the lane.
This algorithm will accurately steer the vehicle at speeds up to 70mph and at curvatures up to
0.02 m-1 or 50 m radius turns but at slower speeds. Figure 23 shows the algorithmic stages of
our structured lane-tracking algorithm.

4.2.7 Profile Following
The profile follower uses a downward facing laser scanner mounted on the front of the vehicle to
determine the position of the geometric edge of the road and generates steering arcs to steer the
vehicle away from it from the edge. This behavior is primarily used to push the vehicle away
from curbs.

4.2.8 Visual Stop Line
This behavior controls the speed of the vehicle so
that is stops the vehicle so the vehicle’s front
bumper is directly over a physical stop line on the
ground. The algorithm uses camera imagery and
bounds its search for the stop line to a subregion
based on the location of the stop waypoint from the
RNDF. The stop line is detected using a profile
over the summation of rows in the subregion. The
stop line location is determined by finding a peak
in the profile over the rows and making sure the
peak meets minimum thresholding requirements.
Figure 24 shows the output of our visual stop line

algorithm. The bounded search region is indicated by the transparent blue trapezoid and the scan
line profile is shown on the left side of the search region. In this case the peak of the scan line
profile directly coincides with the stop line on the ground. The purple horizontal line indicates
the algorithms estimate of the stop line in the scene.

4.2.9 Virtual Bumpers
Our architecture has multiple built-in layers of protection
against collisions. At the highest level is the obstacle
avoidance algorithm. At the lowest level are the virtual
bumpers. The virtual bumpers provide a protective
boundary around the vehicle as shown in Figure 25, and
act as a last layer of defense for an impeding collision.
For front and rear breaches of the virtual bumper
boundary, the vehicle is immediately stopped. This
capability is only active below host vehicle speeds of
10mph. In the side zones, the virtual bumper algorithm
blocks the vehicle from steering in the direction of the
zone breach. The side zones are active at all speeds.

4.3 Condition State Evaluators
In order for the control architecture to make logical decisions based on the state of the urban
environment, a set of condition evaluators have been implemented that provide the truth values
for a wide range of conditions. For instance, if the reasoning system is attempting to cross an

 23

intersection, it needs to know if the intersection is clear before proceeding. Unless the
intersection is clear, the host vehicle’s progress will be blocked. A typical set of condition
evaluators used to determine intersection clearance are CLEAR_LEFT, CLEAR_RIGHT and
CLEAR_FRONT as shown in Figure 26. If all of these are satisfied, the vehicle is allowed to
cross the intersection. In this section we describe the condition evaluators in our system.

4.3.1 Intersection Left/Right
Clear
These condition evaluators make use
of the data coming from the side
looking radars and cameras. The
radars in addition to providing target
range and angle also provide a range
rate for each potential target. The
cameras are used with image
differencing in localized portions of
the image. By combining the radar
information with the localized image
differencing an accurate assessment
of left and right clearance can be
performed.

4.3.2 Intersection Front Clear
The front clear determines if the center portion of the intersection is clear. This condition
evaluator makes use of the front facing laser scanner and knowledge of the intersection geometry
that is posted by the mission planner to determine if this region of the intersection is clear.

4.3.3 Intersection Precedence
This condition evaluator determines when it is the host vehicle’s turn to cross an intersection, if
there is other traffic at the intersection. This algorithm looks at both the laser and camera data
for the different zones of the intersection. The search zones for this algorithm are dynamically
determined when the vehicle arrives at the intersection based on geometry deduced from the
RNDF file and the current vehicle position relative to the intersection. In order to separate
vehicle detections from clutter, templates on the laser data and refinement is done using image
processing on the projected laser hits in the camera image. Figure 27 shows the situation where
the host arrives at an intersection where another vehicle already was situated and waiting to cross
the intersection. The upper panel shows the other vehicle in the imagery from the left looking
camera and a host vehicle centered map showing laser data relative to the host vehicle. The
detection in the map is indicated by red cells with a red bounding box. The search zones are
shown as blue rectangles. The host vehicle’s progress is blocked and this is indicated by the
solid red square in the lower left of the upper panel. After the other vehicle clears the
intersection, the algorithm determines it is the host’s turn to cross and this is indicated by the
solid green square in the lower left of the lower panel.

Figure 26: Intersection Clearance Zones.

 24

Figure 28: Passing Zones for the Passing Condition

Evaluators.

4.3.4 Passing Condition evaluators
These condition evaluators determine if
the passing zones around the host
vehicle are clear for a passing or lane
change maneuver. These passing zones
are shown in Figure 28. The appropriate
set of passing zones considered in the
decision to pass is based on the direction
of the pass maneuver. For instance a
pass maneuver to the left lane requires
clearance in the REAR_LEFT, LEFT
and FRONT_LEFT zones. The
clearance of zones is determined using a
combination of laser and radar data.

5 System Testing
Our team uses three forms of testing that includes a cluttered urban environment, a sparse urban
environment and a well controlled regression test.

5.1 Cluttered Urban Environment
Our cluttered urban environment testing takes place in a small town called Louviers Colorado
shown in Figure 29 with the RNDF overlay. Louviers is particularly difficult for robot
navigation due to the heavy tree cover that causes prolonged GPS outages and stark shadowing
on the roadways which provide challenges for vision-based perception algorithms. In addition,
Louviers has narrow roads with lots of road side clutter which challenge all of the sensing
modalities. It is our belief that by overcoming the difficulties associated with Louviers, our

Figure 27: The top panel show the scenes from three separate cameras with laser
data projected into the scene with a two dimensional map showing the laser data
relative to the host vehicle. In the top row, since a vehicle has been detected in the
left zone at the time the host arrived at the intersection, the algorithm determines
that it is NOT the hosts turn to cross. After the other vehicle crosses the
intersection, the algorithm determines it is the host’s turn to cross the intersection
which is shown in the lower panel.

 25

system will be more reliable and robust in all urban environments. We frequent this test site on a
daily basis.

5.2 Sparse Urban Environment
Our second urban test site is Keenesburg, Colorado shown in Figure 30 with the RNDF overlay.
Keenesburg is a much more benign environment with much less tree cover making both the
navigation and perception problems easier. This testing occurs on a weekly basis. The
Keenesburg testsite is also the location of our DARPA site visit.

5.3 Regression Test
The regression test is based on the ISO-3888-1 standard with modifications specific to robotic
testing [3]. This ISO test was originally designed to evaluate human drivers. We have setup this
course in a large flat parking lot. The purpose of this regression test is to make sure that new
modifications to the system have not negatively impacted the low-level controllability of the
robotic platform. This test focuses mostly on low-level control, navigation and simple
perception. The course is intended to by run at progressively higher speeds starting at 5 mph up
to 30 mph. For each run a detailed account of performance is maintained.

References
[1] Klarquist, William, “Intelligent Vehicle Safety Technologies 1Technical Description.”,

DARPA Grand Challenge II Technical Paper, August 2005.

[2] Kelly, Alonzo, “A Partial Analysis of the High Speed Autonomous Navigation.” ,CMU

Robotics Institute Technical Report, CMU-RI-TR-94-16, May, 1994.

[3] Koon, Phillip, “Evaluation of Autonomous Unmanned Ground Vehicle Skills.”, CMU

Robotics Institute Technical Report, CMU-RI-TR-06-13, March 2006.

Figure 30: Keenesburg Colorado sparse
urban environment testsite with RNDF
overlay.

Figure 29: Louviers Colorado cluttered
urban environment testsite with RNDF
overlay.

